

Universität Augsburg Fakultät für Angewandte Informatik

Segformer++: Efficient Token-Merging Strategies for High-Resolution Semantic Segmentation

Daniel Kienzle, Marco Kantonis, Robin Schön, Rainer Lienhart

IEEE International Conference on Multimedia Information Processing and Retrieval 2024

August 7th 2024, San Jose, California, USA

Motivation

Segformer++: Efficient **Token-Merging** Strategies for **High-Resolution** Semantic Segmentation

Core Ideas:

- Reduction in number of tokens using Token Merging
- Specialize in **dense pixel tasks** → SegFormer architecture
- Evaluation of high-resolution performance
- Inference-only possible → no need for finetuning
- → Introduce Segformer++ architecture

Standard Token Merging

Reducing tokens in standard transformers

Bolya, D., et al, "Token Merging: Your ViT but Faster," in International Conference on Learning Representations (ICLR), 2023.

Gradually reduce the number of tokens by...

...merging a fixed quantity of tokens per stage ...merging the most similar tokens (Cosine Similarity)

SegFormer

Specialized transformer architecture for dense pixel tasks

Xie, E., et al, "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers," in *Neural Information Processing Systems (NeurIPS)*, 2021.

Major changes to ViT:

- Overlapping 7x7 patches instead of 16x16
 patches
- Pyramid Structure: Reduce #token after each stage with strided convolution
- Mix-FFN: Convolution in FFN block
- **Spatial reduction attention:** Reduce #token before attention with strided convolution
- Multiple convolutional layers are introduced
 Number of tokens is increased

Attention in SegFormer

From Segformer to Segformer++

How to use Token Merging with convolutional layers

Idea: Further reduction in the number of token with Token Merging
 → Enable High Resolution Inputs

Convolutions depend on the 2D structure of the tokens. **Problem:** Token Merging breaks the 2D structure.

Solution:

- Merge directly before attention layer
- Unmerge (copy) directly after attention layer

 \rightarrow Largely reducing the number of tokens by factor λ

Overview

We compare multiple strategies

Introduce 2 versions:

- **Segformer++**_{HQ} : moderate efficiency gains + great performance
- Segformer++_{fast}: high efficiency gains + slightly worse performance

Inference-only possible:

 \rightarrow Large pretrained models on cheap hardware

Results

Inference only & with training

Method	mloU ↑	mlou _{small} ↑	Speedup ↑
SegFormer	82.39	72.97	1.00
Segformer++ _{HQ}	82.31	72.93	1.61
Segformer++ _{fast}	82.04	72.24	1.94

Inference-only results on Cityscapes

mloU ↑ mIoU_{small} ↑ Memory (GB) ↓ Method Steps/s ↑ SegFormer 82.39 72.97 0.80 48.30 Segformer++_{HO} 82.19 72.77 1.12 33.95 Segformer++_{fast} 1.24 81.77 72.39 30.50

Results with training on Cityscapes

Inference-only:

- Significant speedups
- Great performance on small classes

With training:

• Good speedups + significantly lower memory requirements

→ Nearly no performance losses with our strategies

Results

High-resolution speedups

Method	512x512	640x640	1024x1024	2048x2048	3840x2160
Segformer++ _{HQ}	1.18	1.32	1.61	2.04	2.66
Segformer++ _{fast}	1.27	1.45	1.94	2.75	4.31

Inference speedups calculated on random tensors

→ Impressive speedups on high-resolution images

Visualizations

Semantic Segmentation + Human Pose Estimation

Segformer++_{HQ}

Segformer++_{fast}

Conclusion

Segformer++: Efficient **Token-Merging** Strategies for **High-Resolution** Semantic Segmentation

- → Largely increasing efficiency, especially for high resolution images
- → Strategy can be applied at training or inference only
- → Segformer++ preserves small details

Moreover:

- Applicable to multiple dense pixel tasks
- Applicable to **multiple architectures**

