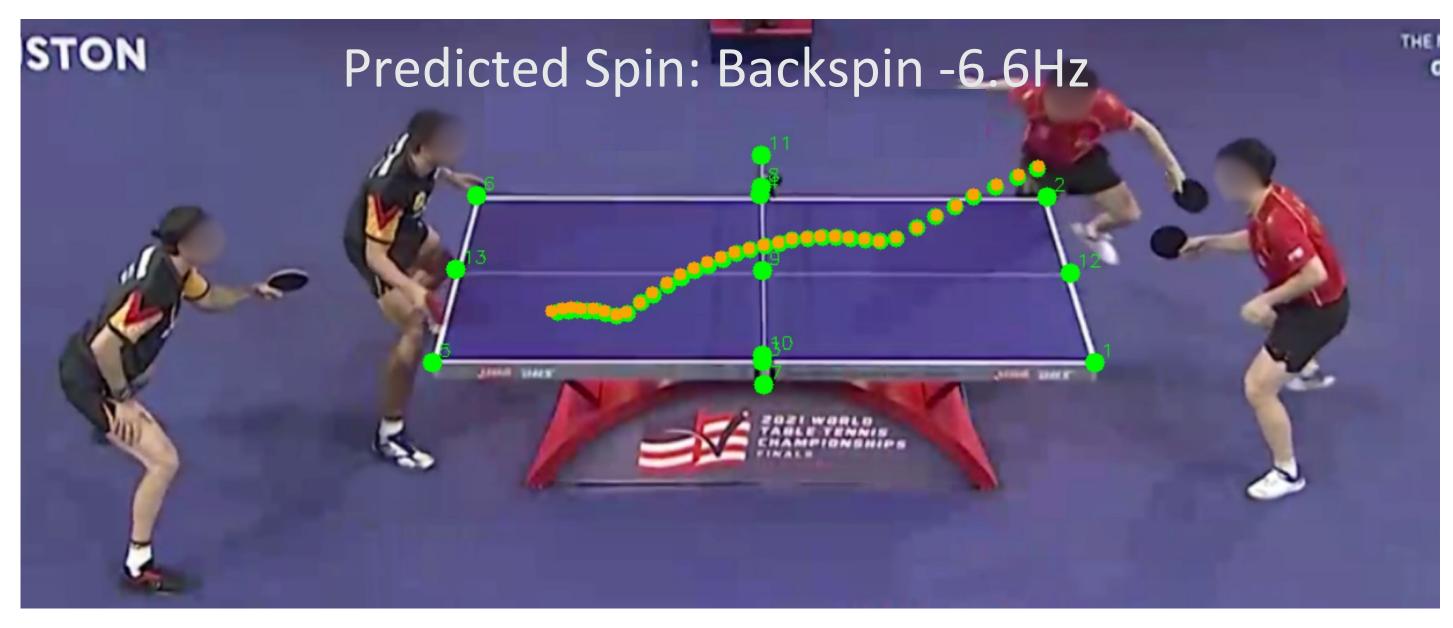


Uplifting Table Tennis: A Robust, Real-World Application for 3D Trajectory and Spin Estimation

MOTIVATION

3D ball trajectory & initial spin are key to gameplay analytics

- > Improve training, extract statistics, enable virtual replay
- Goal: Predict 3D Ball Trajectory & Initial Spin
- Challenge: No 3D ground truth in real videos
- Solution: Implement Two-Stage Pipeline

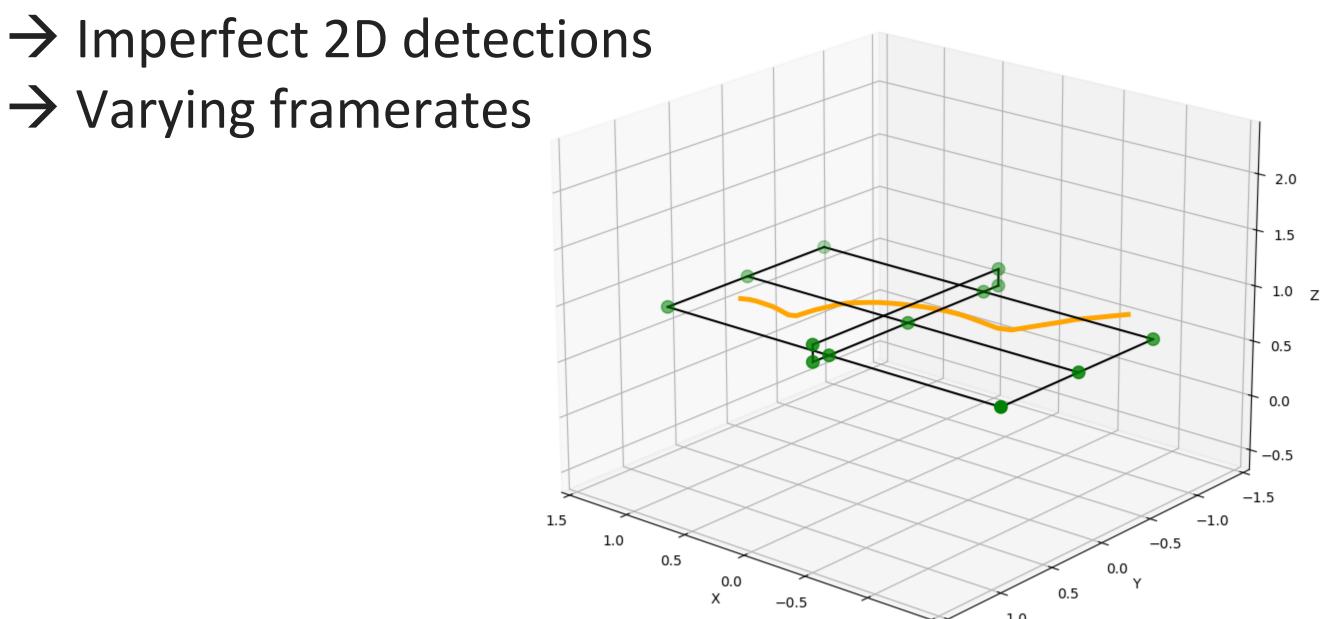


2D detections (green) and reprojected 3D predictions (orange)

FROM CONCEPT TO PRACTICAL APPLICATION

Two-Stage Pipeline:

- Front-End: Detections in the video frames Video frames → 2D ball trajectory & 2D table keypoints
- Back-End: Uplifting approach [1] 2D trajectory → 3D ball trajectory & initial spin
- Core Challenge: Combining Front- and Back-end



Predicted 3D trajectory

-1.5 1.5

A ROBUST TWO-STAGE PIPELINE

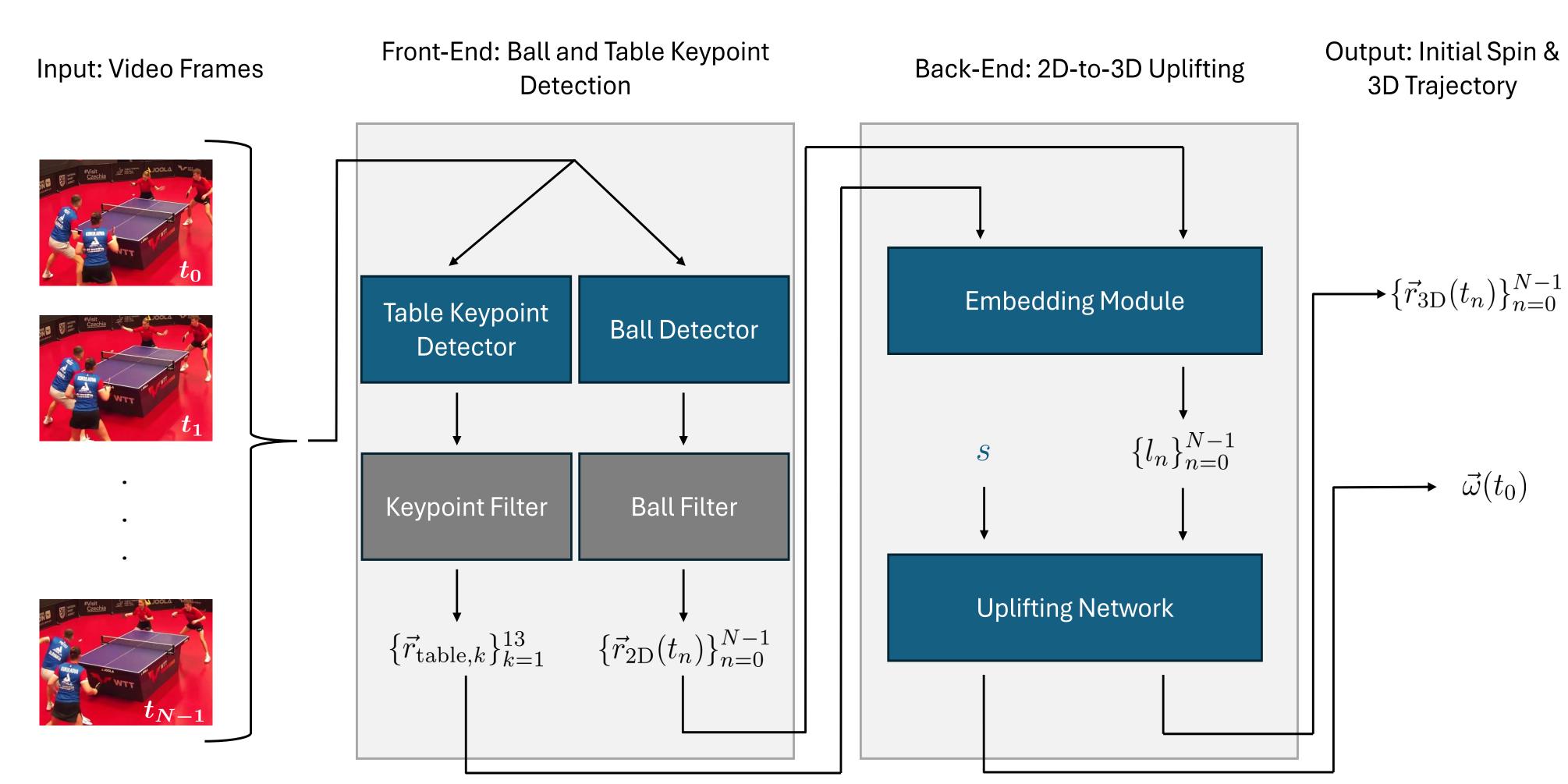
Challenge: No **3D Ground Truth** Video → 3D trajectory & spin is impossible

Solution: Introduce Two-Stage pipeline

- Train Front-End with Real 2D Annotations
- Train Back-End with Synthetic Data

Contributions:

- High-performance **Detectors** utilizing the Segformer++ architecture [2]
- Tailored Filters removing false positives
- Robust **Uplifting Network**
 - → Zero-shot generalization
 - → Deal with noisy & missing detections



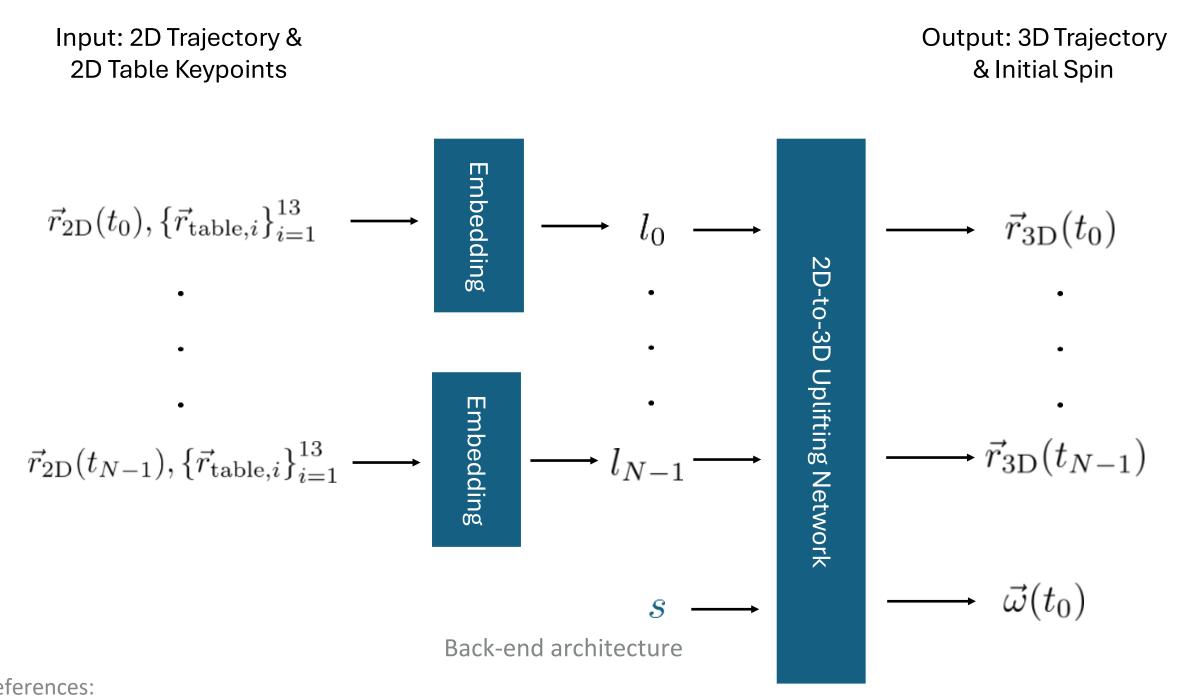
Overview of the full pipeline

2D-TO-3D UPLIFTING NETWORK

Trained solely on **Synthetic Data**

- → Smart data representation
- → No synthetic-to-real gap
- → Zero-shot generalization

We adjust the architecture from [1] to varying framerates and real-world imperfections



References:

• [1]: D. Kienzle, R. Schön, R. Lienhart and S. Satoh, "Towards Ball Spin and Trajectory Analysis in Table Tennis Broadcast Videos via Physically Grounded Synthetic-to-Real Transfer", Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR) Workshops, 2025

• [2]: D. Kienzle, M. Kantonis, R. Schön and R. Lienhart, "Segformer++: Efficient Token-Merging Strategies for High-Resolution Semantic Segmentation", IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR), 2024

RESULTS

Model	#Params	Input Res.	FPS ↑	ACC@2px↑	ACC@5px↑	ACC@10px↑
Segformer++ (B0)	$ 3.7 \cdot 10^6$	1920×1088	26	43.2 %	86.8 %	94.4 %
Segformer++ (B2)	$24.7 \cdot 10^6$	1600×896	19	54.3 %	85.3 %	93.0 %
WASB (HRNet Small)	$1.5 \cdot 10^6$	1280×704	17	41.1 %	83.8 %	89.3 %
VitPose (ViT Small)	$25.3 \cdot 10^6$	1152×640	19	30.0 %	68.5 %	79.7 %

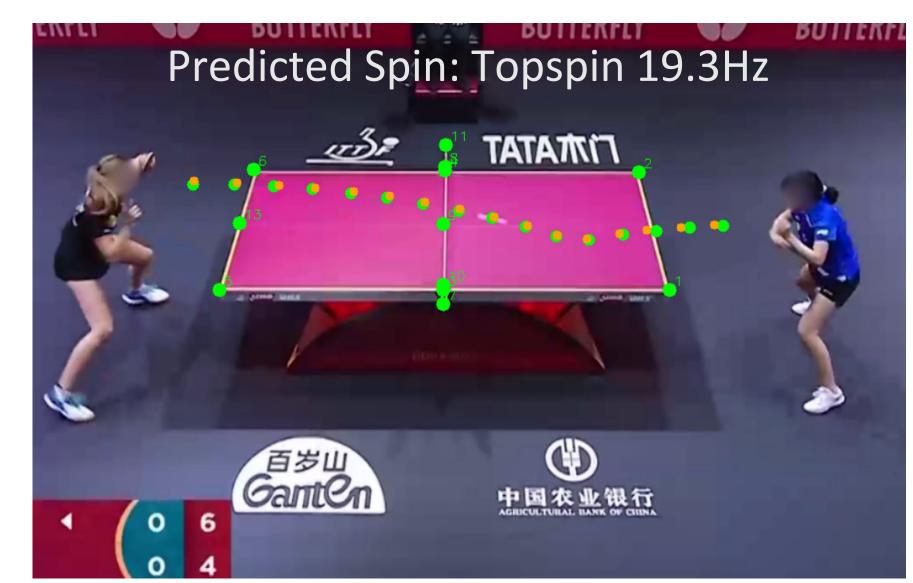
Ball Detection with different architectures

Model	#Params	Input Res.	FPS ↑	ACC@2px↑	ACC@5px↑	ACC@10px
Segformer++ (B0)	$3.7 \cdot 10^6$	1920×1088	26	75.0 %	85.9 %	90.3 %
Segformer++ (B2)	$24.7 \cdot 10^6$	1600×896	18	75.0 %	87.1 %	91.8 %
WASB (HRNet Small)	$1.5 \cdot 10^{6}$	1280×704	16	72.4 %	87.4 %	91.3 %
VitPose (ViT Small)	$25.9 \cdot 10^6$	1152×640	19	38.0%	50 3 %	52 1 %

Table Keypoint Detection with different architectures

Dataset	Table: m2DRE ↓	Ball: m2DRE↓	Spin: ACC ↑	Spin: $F_1 \uparrow$
TTHQ	$2.72 \pm 5.71 \mathrm{px}$	$12.28 \pm 10.84 \mathrm{px}$	89.5 %	0.900
TTST	$5.75 \pm 10.26 \mathrm{px}$	$9.41 \pm 16.90 \mathrm{px}$	97.1 %	0.974

Evaluation of the full pipeline



		sforms				
Method	Half FPS	Miss. Det.	$ACC \uparrow$	$F_1 \uparrow$	m2DRE↓	
Kienzle et al. [22] Mixed Ours	×	×	97.1 % 100.0 % 97.1 %	0.970 1.000 0.970	2.98 px 2.49 px 3.43 px	
Kienzle et al. [22] Mixed Ours	/	×	76.5 % 79.4 % 100.0 %	0.731 0.770 1.000	2.71 px 3.13 px 3.54 px	
Kienzle et al. [22] Mixed Ours	×	✓	88.2 % 97.1 % 97.1 %	0.876 0.970 0.970	24.15 px 5.45 px 5.56 px	
Kienzle et al. [22] Mixed Ours	/	✓	67.7 % 70.6 % 97.1 %	0.598 0.646 0.970	23.54 px 5.99 px 5.75 px	
Back-end architectures under the influence of real-world imperfections						

2D detections (green) and reprojected 3D predictions (orange)